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Critical behaviour of the bond-diluted Potts model on 
Sierpinski carpets 

Yun Qin and  Z R Yang 
Department of Physics, Reijing Normal University, Beijing, The People's Republic of China 

Received 3 October 1986 

Abstract. A four-parameter bond-moving renormalisation is used to study the critical 
properties of the bond-diluted q-state Potts model on Sierpinski carpets. Fixed points, 
critical exponents and  a phase diagram are obtained. In  our  results, there is a borderline 
value q = 4,; for q < q,, the  diluted model exhibits the same critical behaviour as  the pure 
system. However,  for q > 9, there is crossover to a new diluted Flxed point. This beha \ iou r  
is similar to that of the diluted system on a regular lattice with translational invariance. 
We give some values of q, for carpets with different ( b ,  I )  where b and  I are  structure 
parameters of carpets. 

1. Introduction 

Many studies of spin systems on fractals have been carried out using various theoretical 
methods. In particular, Gefen et a /  (1983, 1984a, b)  treated the Ising model on three 
basic types of fractal by using PSRG methods. Their studies showed that the critical 
properties of fractals depend on some geometrical factors. Very recently Hu (198S), 
Lin Bin and  Yang (1986), Lin Bin (1986), Yang (1987), Qin and Yang (1986) and Ling 
Hao and  Yang (1987) further investigated the same problem and some significant 
results have been obtained. In this paper, we consider a bond-diluted Potts model on 
Sierpinski carpets. 

We describe the dilution by introducing two concentrations w and p ,  where w 
denotes the concentration of occupied bonds which border an eliminated subsquare 
and p the concentration of all the other occupied bonds, and  analyse the critical 
properties of the diluted system by constructing a four-parameter bond-moving RG. 

For the problem of bond dilution, i t  is quite obvious that when the bond concentration 
is below the percolation concentration, the system consists of an aggregate of finite 
connected clusters and  therefore no  phase transition is expected. The percolation 
concentration can be determined by the fixed point of RG transformation at T = 0. In 
our calculation, the percolation fixed point is a tricritical point (see table 3). 

In another respect, for a diluted Potts model on a regular lattice with translational 
invariance, the critical behaviour of the system is the same as that of the pure system 
for q < q, = 2 and crosses over a new form for q > q, = 2 (Yeomans and  Stinchcombe 
1980). Our results showed that similar phenomena will also occur on fractals. Through 
investigating the carpets with different (6, I ) ,  where 6 and I are the structure parameters 
of carpets ( 1  x I subsquares are eliminated from b x b subsquares (Gefen et a /  1984b)), 
we find that, under given 6, the q, decreases as I increases for the carpets with central 
cutout (see table 4) and  the q, will be equal for some carpets with the same (6, I )  but 
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( a  I ( b l  

Figure 1. ( a )  and ( b )  are the first construction stage for Sierpinski carpets with the same 
b and I ( b  = 9, I = 3 )  but a different way of cutout. They both have the same q, = 6.56. 

different ways of cutout because they lead to exactly the same RG recursion relations. 
For example, figures l (a )  and ( b )  are two carpets with b = 9  and Z=3 but different 
ways of cutout. They both produce the same RG recursion relations (Ling Hao and 
Yang 1987). Thus, they give the same q, =6.56. Comparing the values of q, of 1=0 
and different b (see table 4), which implies the carpet has become a lattice with 
translational invariance, with the known result qr = 2 (Yeomans and Stinchcombe 
1980), it may be found that the q, increases and deviates from the known result with 
increasing b. For example: with b = 2 and I = 0, q, = 2.95; with b = 5 and I = 0, q1 = 5.22; 
and with b = 7 and I = 0, q, = 6.45. It probably reflects the fact that the larger the b 
factor, the poorer the result of the method of bond-moving RG. 

2. Model 

The Potts model on carpets is described by the Hamiltonian 

-PH = C K t j S , , , , )  + C J m n S ( v  ,,,, U , , ]  

(11) ( m n )  

where (U) and ( m n )  mean nearest-neighbour bonds, J,, indicates the ‘coupling’ via a 
bond which borders an eliminated subsquare and K ,  the ‘coupling’ via all the other 
bonds (Gefen eta1 1984b). To introduce dilution, we allow K ,  and J,,, to be distributed 
according to 

where p and w are the concentrations of an occupied bond with ‘coupling’ K,] and 
J,,, respectively. 

3. Recursion relations 

We employ the same renormalisation scheme as Gefen er a1 (1984b) used for the Ising 
model, Migdal-Kadanoff’s bond-moving renormalisation, to produce the recursion 
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relations for the bond-diluted Potts model. Following Yeomans and Stinchcombe 
(1980), it is convenient to introduce functions t ( K )  and t ( J )  

t ’ l K : , l  

eK -1 e’-1 
e K + q - l  e ’+q- l ’  

t ( K )  = t ( J )  = (3) 

Here q is the number of Potts states. Thus, the new coupling K:j and Jk , ,  for carpets 
with central cutout are given by 

where t ,  = t ( K , , + K u 2 + .  . . + K K a b ) ,  t ,  = t ( K y l + K y 2 + .  . . + K , ~ ~ - I - ~ ) + J , ~ + J , ~ ) ,  t u =  

figures 2 ( a )  and ( b ) )  and b and 1 are the structure parameters of carpets: I x 1 subsquares 
are elimated from b x b subsquares (Gefen er a1 1984b). 

t ( K , i + K v 2 + .  . *+Ku&(b- l )+Jv l ) ,  t , =  t ( K V i + K , 2 + .  .+K,tcb-r)-l+J,,+J,2) (see 

The renormalised distributions of coupling KL and JL,, can be denoted by 

~ ’ ( t ’ ( ~ b ) ) =  1 n d ~ t , ~ ( ~ i , )  n d J m , P ( J m n ) s ( t ’ ( K h ) - f ( t ) )  

( 5 )  
p t ( f t ( J ~ n ) )  n d ~ v P ( ~ y )  n d J m , p ( J m n ) s ( t ‘ ( J L n ) - g ( t ) ) .  

In order to find the recursion relations which we need, we approximate the new 
distributions P‘( t ’ ( K h ) )  and P’( r’(Jk, , ) )  by 

Papprox( t ‘ (  K I) 1 = P’6 ( t ’ (  K h) - t ’ (  K ’ ) )  + ( 1 - P’) 6 ( t ‘ (  K ;)) 

P a p p r o x ( t ‘ ( J L n ) )  = w ’ s ( t ‘ ( J L n ) ) -  t‘(J’))+(1- w‘)S(t’(JLn)) 
( 6 )  

where t ’ (K’) ,  p ’  and t ‘ (J’) ,  w’ are determined by setting the first two moments of 
Pa,p,o,(t’(K~)) and Pappro,(t’(J~,)) to be equal to those of the P ’ ( t ’ ( K b ) )  and 
P’( r’(Jk,,)) (Yeomans and Stinchcombe 1980). This leads to the recursion relations 

Here t ,  = t ( K i j ) ,  t = t (Jmn) ,  p ,  = p  and p 2 =  w and (. . .) means an average over the 
renormalised distributions P’( t ‘ )  of ( 5 ) .  

I I 1  

J J J  
(a1 

~: 
v = 3  

n 

(61 

m m  

n n  

Figure 2. ( a )  Three steps in obtaining the renormalised i ’ ( K ; , )  between i and j for the 
b = 5 and I = 1. ( b )  As ( a )  for t ’ ( J : , , , , ) .  
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4. Results 

The numerical results of critical points and critical exponents for b = 5 and 1 = 1 are 
listed in tables 1, 2 and 3.  For convenient analysis, q, the number of Potts states, is 
extended to a continuous variation and only one irrelevant exponent which corresponds 
to the largest irrelevant eigenvalue is given in the tables. 

We see that in table 1 the pure fixed point F (  t * ( K ) ,  t * ( J ) ,  p *  = w* = 1) is stable 
for 4 < q, = 4.59, showing that the critical properties of the system are unchanged by 
dilution. However, for q > q, = 4.59, the diluted fixed point F ' ( t z (  K ) ,  t * , ( J ) ,  p:, w : )  
appears and the pure fixed point F becomes a tricritical one. The system exhibits 
crossover to a new critical region dominated by the diluted fixed point F' .  The transition 
remains second order, but has new values of the critical exponents. The crossover 
exponent 

4 = Y d Y ,  

Table 1. Fixed points for the bond-diluted Potts model on Sierpinski carpets with b = 5 
and I =  I .  

9 3 4 4.58 4.59 4.60 5 6 

0.16492 0.14021 0.12960 0.12944 
0.002 30 0.001 22 0.000 89 0.000 886 
1 1 1 1 
1 1 1 1 
0.374 77 0.397 96 0.409 24 0.409 22 

-0.093 40 -0.028 89 -0.000 33 0 

0.13068 
0.000 92 
0.992 84 
0.976 26 
0.408 27 

-0.000 26 

0.129 27 
0.000 88 
1 
1 
0.409 40 
0.000 58 
0.001 42 

0.132 18 
0.000 96 
0.983 47 
0.945 8 1 
0.407 18 

-0.000 33 

0.123 07 
0.000 73 
1 
1 
0.417 I O  
0.016 68 
0.039 99 

0.206 87 
0.005 03 
0.698 29 
0.290 38 
0.363 87 

-0.022 74 

0.11033 
0 000 47 
I 
1 
0.430 41 
0.055 5 1 
0.128 97 

0.303 27 
0.020 68 
0.534 35 
0.115 48 
0.330 79 

-0.071 75 

Table 2. Fixed point E and its exponents. 

9 f * ( K )  / * ( J )  p *  w *  j ,  ?'z .b 1 I.'4 

3 0.11475 1 1 1 0.374 26 0.266 38 0.229 43 -0.132 03 
4 0.098 06 1 1 1 0.397 88 0.288 36 0.208 93 -0.068 82 
5 0.086 38 1 1 1 0.416 10 0.303 93 0.192 54 -0.021 31 
6 0.077 53 1 1 1 0.431 78 0.315 94 0.17921 -0.013 32 

Table 3. Percolation fixed point for carpets with b = 5 and I = 1. 

1 I 0.2860 0.019 62 0.289 61 0.279 61 -0.370 94 
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describing the crossover of the system from pure to diluted critical behaviour is listed 
in table 1 for q > 9,. The existence of q, on a fractal lattice is very similar to Yeomans 
and  Stinchcombe’s finding (1980) on the translational lattice. A possible explanation 
for our finding is that the sign of the specific heat exponent LY is changed as q transforms 
from q<q ,  to q >  4,. This insight depends on the existence of an extended Harris 
criterion which can perhaps provide a possible basis for our interpretation. Unfortu- 
nately, such an  extended criterion, which not only applies to a translational lattice but 
also to a fractal lattice, is absent as yet. 

The percolation fixed point ( p : ,  wf, t ; ( K )  = tf(J)  = 1) and exponents are shown 
in table 3. It is a tricritical point, y,,,, y p 2 >  0 and y,,<O. Another non-trivial fixed 
point E and its exponents are listed in table 2 .  In our four-dimensional space, it is 
not a marginal (Lin Bin 1986), but a multicritical point. Several trivial fixed points 
such as ( t * ( K )  = t * ( J )  = p *  = w* = l ) ,  ( t * (  K )  = t * ( J )  = p *  = w* = 0), etc, are not listed 
in the table. The values of q, for carpets with different (&I,/) are shown in table 4. The 
values of fixed point and  exponents obtained for the pure fixed points F and E are 
in agreement with the known results (Lin Bin 1986). 

Because the parameter space is four dimensional, it is impossible to make a complete 
flow diagram. Thus, we give the flow diagram in a special subspace. Figure 3 shows 

Table 4. The values of the 9, of carpets with central cutout for different ( b ,  I ) .  

~~ 

b 7 5 2 

I 3 1 0 3 1 0 0 
~ 

9, 4.05 6.1 1 6.45 2.44 4.59 5.22 2.95 

“-It* 

C 

Figure 3. Flows diagram of the diluted Potts model in the subspace of (K ’ ,  p ,  9). The 
critical line within the plane of constant 9 (for example, A D )  is the projection of the 
critical line, which links the percolation fixed point with the pure fixed point, onto the 
subspace of ( K ’ ,  p ) .  
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the topology of the RG flow diagram in the subspace of K - ’ ,  p and number of states 
q. The flow diagram in subspace ( J - ’ ,  w, q )  is similar to figure 2. The surface ABCD 
separates the ferromagnetic and disordered phase. Within this surface there is a line 
of diluted fixed points, fF, which meets at point f with line AB at q = q l .  The intersection 
AB of the surface with the plane p = 1 corresponding to the pure Potts problem is the 
pure fixed point line which defines the critical temperature K,’(q) of the Potts model. 
DC is the line of percolation fixed points. The RG trajectories lie in planes of constant 
q. Thus, flows that begin at the percolation fixed point line are attracted by the pure 
fixed line for q<q , .  Increasing the number of Potts states beyond q =  q,, flows that 
start at the percolation fixed point line and the pure fixed point line go towards the 
diluted fixed point line as the renormalisation is iterated. 

In  summary, we constructed a four-parameter bond-moving RG and used it to study 
the critical properties of the bond-diluted Potts model on Sierpinski carpets. Fixed 
points, critical exponents and a phase diagram are presented. We found that there is 
a q,, such that for q < q,, the critical properties of the system are described by the pure 
fixed point F which is the critical point of the pure system. However, for q >  q l ,  a 
new type of critical behaviour dominated by the diluted fixed point F‘ appears. This 
situation is similar to that of the diluted Potts problem on lattices with translational 
invariance. 
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